Most cancer in firefighters is due to radio-frequency radiation exposure not inhaled carcinogens

S. Milham
Washington State Department of Health (retired) Olympia Washington, USA

BACKGROUND

In the 1970s I set up a system for coding and analyzing the occupational information on the Washington State death record. Three volumes of these analyses have been published by National Institute of Occupational Safety and Health (NIOSH) beginning in 1976. The final NIOSH volume was published in 1997, and now Washington State occupational mortality data since 1950 is available on-line [1] and is updated automatically. The first monograph, Occupational Mortality in Washington State published by NIOSH in 1976 covering deaths in the years 1950–1971 showed that Washington State firefighters had increased mortality due to brain cancer, malignant melanoma, and non-Hodgkin’s lymphoma. None of these cancers had an intuitive connection to inhaled carcinogens.

In 2004, I examined a cluster of three male breast cancers in of- fice workers exposed to high levels of EMF [2]. This added to an already impressive body of reports linking male breast cancer to EMF and RFR [3]. This cancer is so rare that its repeated appearance in EMF/RFR exposure situations functions like a sentinel cancer for these exposures. When a Florida firefighters’ cohort was reported as having an increased incidence of male breast cancer [4], the hypothesis that RFR causes some firefighters’ cancer was born.

CANCERS INCREASED IN FIREFIGHTERS

Firefighters have been shown to be at increased risk of developing a number of cancers. A recent review of 32 studies and a meta-analysis of cancer risk among firefighters [5] concluded that multiple myeloma, non–Hodgkin’s lymphoma, prostate cancer and testicular cancer were probably associated with firefighting, and that leukemia, skin cancer, malignant melanoma, brain cancer, cancer of the rectum, colon, stomach, buccal cavity and pharynx were possibly associated with firefighting. Another review [6] adds urinary bladder cancer to the probable list. A 2005 study links male breast cancer and thyroid cancer with firefighting [4].

CARCINOGENIC EXPOSURES IN FIREFIGHTERS

Firefighters are exposed to a long list of carcinogens in combustion products including asbestos [7], polycyclic aromatic hydrocarbons [8], benzene [9], lead [10] and aromatic amines [11]. The major route of exposure to these carcinogens is by inhalation. Inhalation of carcinogens ordinarily leads to development of respiratory cancers. For example, coke oven workers [12] who inhale coal tar pitch volatiles, and copper smelter workers [13] who inhale arsenic trioxide are at increased risk of developing lung cancer. Respiratory cancers, including lung and laryngeal cancers and respiratory diseases like bronchitis and emphysema, are usually not at increased risk in firefighters. The 32 paper review and
meta-analysis [5] concludes that lung cancer is unlikely to be associated with firefighting.

EMF/RFR exposure and cancer

In 1982, I was the first to show that workers in jobs with an intuitive exposure to electricity had increased mortality due to leukemia [14]. Since then, non-Hodgkin’s lymphoma [15], brain cancer [16], malignant melanoma [17], and male breast cancer [23] have been shown to have increased mortality or incidence in occupational groups. The upward turn of malignant melanoma incidence has been ecologically linked to the roll out of television and frequency modulation radio transmission in the 1950s with increased RFR exposure of populations [18]. Malignant melanoma has increased incidence in occupational groups [17] and in office workers exposed to strong EMF fields [19]. High frequency voltage transient exposure (a type of RFR) of teachers in a southern California school has been linked to an increased incidence of malignant melanoma, thyroid and uterine cancer [20]. Amateur radio operators [21] exposed to RFR in their hobby, have increased mortality due to leukemia, multiple myeloma and other lymphatic cancers. Childhood leukemia has increased incidence in populations living near powerful terrestrial antennas which emit RFR [22–24]. A cluster of cancer of the testes has been reported in traffic policemen who held the live radar unit in their laps while on duty [25].

EMF and RFR exposure of firefighters

Firefighters are exposed to RF from transmitters which are at times located in the firehouse. Fire vehicles and trucks area also equipped with two-way radio systems which can expose vehicle occupants to RFR, and personal transceivers expose the firefighters to RFR while communicating at the fire scene. US firefighters’ radio systems are described in great detail in a National Institute of Occupational Safety and Health (NIOSH) document [26].

Hypothesis

Many of the cancer types with an increased incidence in firefighters are caused by firefighters’ occupational exposure to radiofrequency radiation. Current thinking attributes the cancer increase to inhalation of carcinogenic combustion products. The nature of the inhaled carcinogens has certainly changed over time, since building materials and furnishings have changed increasingly to man-made materials. Yet, the Washington State occupational mortality data set showed that brain cancer and malignant melanoma were already in excess in firefighters’ deaths occurring in the period 1950–1971 and continue to be in excess since then. The same data set showed that men with intuitive exposure to EMF’s and RFR had increased mortality due to leukemia, brain cancer and non-Hodgkin’s lymphoma [1]. An office workers cohort with high EMF exposure showed a cancer increase, with a high risk of malignant melanoma [19]. School teachers exposed to a type of RFR had increased incidence of malignant melanoma and thyroid cancer [20].

Evaluation of this hypothesis

The most difficult part of an evaluation of this hypothesis, as in all occupational cancer studies, is characterizing the past EMF/RFR exposures which caused these cancers, so that cancer latencies can be factored in. If historical RFR exposure can be added to the exposure information available on firefighters, cohort and case-control incidence or mortality studies should be able to test this hypothesis.

Consequences of this hypothesis

One of the most important facets of this hypothesis is that many firefighters’ cancers may be preventable. Workman’s compensation rules for work-initiated cancers will need revision. Like many other potential occupational carcinogens, it would be wise to exercise the precautionary principle to minimize RFR exposure in firefighters before definitive proof of carcinogenicity is available.

References

